En continuant de naviguer sur ce site, vous acceptez notre politique de confidentialité et de cookies.

OK

Science et éducation

Les programmes éducatifs qui intègrent des technologies de mesure 3D dans leurs cours d'ingénierie permettent non seulement de démontrer une expertise actuelle et de pointe, mais également d'offrir aux étudiants les connaissances dont ils ont besoin pour leurs futurs postes dans l'industrie.

En tant qu'enseignant et chercheur, vous devez montrer aux futurs ingénieurs les bases de l'ingénierie, d'après les exigences industrielles actuelles. Pour cela, vous devez suivre l'évolution des technologies et connaître les techniques actuellement utilisées dans l'industrie. Pour les étudiants, vous êtes une source de savoir et un expert en technologie capable de démontrer des compétences avancées.

Cependant, le rôle des enseignants implique une principale contrainte : le manque de temps. Entre l'enseignement, la recherche et les obligations de service, il ne vous reste que peu de temps pour développer de nouveaux sujets et les intégrer dans votre programme d'enseignement. La question se pose : comment pouvez-vous rester à jour sur les dernières technologies et tendances, telles que les scanners 3D laser ou à lumière blanche, afin de retenir l'attention et l'intérêt de vos étudiants ?

Solution Creaform

Avec les outils de numérisation 3D éducationnels et les kits d'enseignement de Creaform, les étudiants auront l'opportunité de se familiariser avec trois domaines à forte demande de l'industrie : La numérisation 3D (évidemment !), le contrôle de la qualité et la rétro-ingénierie. En d'autres mots, ils peuvent utiliser un scanner 3D pour prendre un objet physique et le numériser, afin de pouvoir effectuer des inspections et des modifications.

Les logiciels et les scanners 3D de norme industrielle, portables, faciles d'utilisation, polyvalents et à haute résolution sont la solution pour atteindre vos objectifs et relever vos défis.

  • Portabilité :

    Avec la mise en référentiel dynamique, qui permet de faire bouger librement la pièce et l'instrument, il est possible de numériser directement dans la salle de classe, le laboratoire ou sur le terrain, sans incidence sur les performances.
  • Simplicité :

    Avec des appareils plug-and-play et des interfaces ergonomiques, les étudiants peuvent découvrir facilement la numérisation 3D et les enseignants peuvent devenir rapidement des experts en numérisation 3D.
  • Niveau élevé de détails :

    Avec des caméras à haute résolution pour les géométries et des caméras en couleurs pour les textures, la qualité de numérisation permet aux étudiants de visualiser et de caractériser les plus petits détails de n'importe quel objet.
  • Polyvalence :

    Avec des technologies laser et optiques avancées, ainsi que des volumes de numérisation sans limites, les scanners 3D peuvent être utilisés dans différents projets et permettre de mesurer n'importe quelle pièce, quels que soient sa taille, sa forme, son matériau, sa finition de surface et sa complexité.

Exemples d'applications

Applications

Trier par Industries :

Modélisation 3d pour inspections par sonde ultrasons multiéléments dans l’aérospatiale

Pour assurer la sécurité des passagers et un entretien adéquat de l’équipement, des inspections des dommages de surface des pièces aéronautiques et de la structure doivent être effectuées.

Inspection et maintenance de réacteurs et turbines

L’équipement coûteux et critique que sont les réacteurs et les turbines font l’objet d’une maintenance régulière. Le coût de cet équipement justifie des réparations parfois complexes en cas de détérioration. Pour ces opérations, on doit mesurer précisément les déformations ou les manques de matières pour déterminer les réparations à effectuer. Il faut ensuite vérifier la conformité de la réparation.

Évaluation des conditions d'après exécution - Inspection pièce-CAO

Toutes les pièces produites sur une ligne de production sont assujetties à un contrôle tridimensionnel, qui peut se faire de façon systématique ou par échantillonnage aléatoire. Dans le secteur aérospatial, les contrôles de qualité sont en général exhaustifs et nécessitent un échantillonnage important de points de comparaison, surtout dans le cas de pièces de forme libre ou à géométrie complexe.

Assistance à l'assemblage pour les processus de fabrication

Dans les processus d'assemblage complexes ou critiques, il est indispensable de connaître à tout moment, et pendant toute la durée de l'assemblage, la position relative de chacune des pièces par rapport aux autres.

Inspection de conformité de production en aérospatiale

L'ensemble des pièces produites sur une ligne de production fait l'objet d'un contrôle tridimensionnel, soit systématique, soit par échantillonnage (prélèvement). En aérospatiale, les contrôles effectués sont en général assez exhaustifs et nécessitent de mesurer un grand nombre de points.

Optimisation des temps de contrôle et réglage des outils de conception

Au lancement d'une nouvelle ligne de production, pour des opérations de maintenance préventive, ou en cas de dérives de production, les outils de conception (moules, gabarits, bâtis, presses, etc.) doivent être périodiquement contrôlés et vérifiés, voire réglés, afin de délivrer le niveau de performances attendues.

Votre recherche n'a retourné aucun résultat

Afficher davantage