By continuing to use the site you agree to our privacy and cookie policy.


Science and Education

Educational programs that integrate 3D measurement technologies into engineering courses not only demonstrate up-to-date and state-of-the-art expertise, but also offer students the knowledge they need to get the job they are looking for in the industry.

As teachers and researchers, you must show future engineers the fundamentals of engineering based on industry requirements. To do so, you must follow the evolution of technologies and be up to date on the current techniques used in the industry. For students, you are a source of knowledge and a technology expert capable of demonstrating advanced skills.

Nevertheless, the role of professors has one main constraint: lack of time. Between teaching, research, and service requirements, you usually have little time to develop new subjects and integrate them into your classroom curriculum. Thus, how can you stay up to date with the newest technologies and trends, such as laser and white light 3D scanners, in order to capture the attention and interest of your students?

Creaform Solution

With Creaform’s educational 3D scanning tools and teaching kits, students have the opportunity to become familiar with three high-demand areas in the industry: 3D scanning (of course!), quality control, and reverse engineering. In other words, they can use a 3D scanner to take something from the physical world and bring it into the digital world for inspection and modification.

Portable, easy-to-use, high-resolution, and versatile software and industry standard 3D scanners are the solutions to fulfill your goals and overcome your challenges.

  • Portability:

    With dynamic referencing, where both the part and instrument can move freely while measuring, 3D scanning can either occur in the classroom, the laboratory, or the field without affecting performance.
  • Simplicity:

    With plug-and-play devices and user-friendly interfaces, students can easily learn 3D scanning and teachers can quickly become 3D scanning experts.
  • High level of detail:

    With high-resolution cameras for geometry and color cameras for texture, the scan quality enables students to visualize and characterize the finest details of any object.
  • Versatility:

    With advanced laser and optical technologies and limitless scanning volumes, 3D scanners can be used in different projects and measure any part, regardless of size, shape, material, surface finish, and complexity.

Applications Example


Sort by industries

The Rise of Automation in Aerospace, Defense, and Industrial Gas Turbine Applications

Measure castings with high-productivity industrial measuring cells. Monitor the measurement deviations. Explain the tendencies to customers.

3D scanning to improve quality control in additive manufacturing processes for large parts

3D scanning has become a game changer for companies that use additive manufacturing techniques. Discover the benefits of 3D scanning with 3D printing.

Measuring Impeller Turbines in Harsh Manufacturing Environments

Identify and correct defects on impeller blades quickly and easily. Compare and analyze their dimensional information against target data (CAD).

Design, Development, Engineering, and Refitting of Professional Yachts and Boats

Measure boat propellers and interior yacht cabins precisely in order to offer higher quality design and refit work.

A More Efficient Design Process Leads to Superior Products

Gain new contracts and become more competitive on the market. Accelerate delivery to customers. Get a perfect fit on the first installation.

3D scanning in OEMs [automotive] and aftermarket sectors

Your search yielded no results

Load more